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ODE Solving Packages
First Order ODEs
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ODE45 Recap

ODE45 is an ODE solving package available in Octave and MATLAB.

It can be used to solve equations of the form,

dy

dt
= y ′(t) = f (t, y).

dydt = @(t,y) 2*t;

[t, y] = ode45(dydt, time, y0);
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Simple ODE45 Simulation

time = [0, 5];

y0 = 0;

dydt = @(t,y) 2*t;

[t, y] = ode45(dydt, time, y0);

plot(t, y)

Task

1 Find the solution for this ODE.

dy

dt
= e2t , y(t = 0) = 2. (1)

2 Build a simulation using ODE45 which models the solution to Equation (1) for t ∈ [−1, 1].

Hint: You can’t just set y0 = 2, you need to work in two halves.
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ODE Solving Packages
Second Order ODEs
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Coupled Equations
ODE45 can only find solutions for first-order ODEs, since it can only solve functions of the
form

dy

dt
= y ′(t) = f (t, y).

But we may want to solve a second-order ODE, we would have an equation where

d2y

dt2
= y ′′(t) = g(t, y , y ′).

If we’re creative, we can rewrite our second-order ODE into two coupled first-order ODEs.

y1(t) = y(t), y2(t) = y ′(t)

So using these, we end up with two equations, where,

y =

(
y1
y2

) y ′1 = y2,

y ′2 = g(t, y1, y2).
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Solving Second-Order ODEs
Consider the following initial value problem,

y ′′ − y ′ + 3y = t,

y(t = 0) = 1, y ′(t = 0) = −2.

Rewrite the problem into y ′′(t) = g(t, y , y ′),

y ′′ = t + y ′ − 3y

Now use y1(t) = y(t), y2(t) = y ′(t), so

y ′1 = y2,

y ′2 = t + y2 − 3y1,

where y1(t = 0) = 1 and y2(t = 0) = 2.
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Coding Coupled ODEs
This time, we need to consider y as a vector with two values now, rather than just a single
variable. Now y = [y1; y2].

y ′1 = y2,

y ′2 = t + y2 − 3y1,

dydt = @(t,y) [y(2); t + y(2) - 3 * y(1)];

We also need to define our initial conditions with respect to this y vector.

y0 = [1; -2];

[1, 2, 3] =
(
1 2 3

)
, [1; 2; 3] =

1
2
3


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Coding Coupled ODEs
Otherwise, we can run ODE45 just like we normally would.

[ts, ys] = ode45(dydt, time, y0);

However, our output for y will now contain values for both y(t) and y ′(t).

y =


y1(1) y2(1)

y1(2) y2(2)

y1(3) y2(3)

...
...


When we’re plotting our simulation now, we only want the first column of the y array’s values.

plot(ts, ys(:, 1))

: - The colon means that we want to run through all the rows of the array.

1 - The number means that we only want the first column of the array.
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Simulating Second-Order ODEs

time = [0, 4];

y0 = [1; -2];

dydt = @(t,y) [y(2); t + y(2) - 3 * y(1)];

[ts, ys] = ode45(dydt, time, y0);

plot(ts, ys(:,1))

hold on

grid on;

title("y’’(t) - y’(t) + 3y(t) = t");

xlabel("t");

ylabel("y(t)");

axis([0 4 -4 12]);

T J James (Reach 2023) Modelling Fluid Mechanics August 10, 2023 13 / 36



Solving a Second-Order ODE

Task

Build a simulation using ODE45 which models the solution to Equation (2) for t ∈ [0, π].

y ′′ + 2y = sin(x), y(t = 0) = 0, y ′(t = 0) = −1 (2)
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Simple Harmonic Motion
Modelling Waves
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Floating Ball

Consider a ball floating in water.

If we push the ball down a little, it will feel an upwards force from its buoyancy.

▶ This force will push the ball up.

Once it’s above the water-line, it will feel a downwards force from gravity.

If we assume no friction/resistance, the ball will continue to bob up and down indefinitely.

This is simple harmonic motion.
▶ A motion in which the restoring force is directly proportional to the displacement of the body

from its equilibrium position.
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Simple Harmonic Motion
The force felts by an object experiencing simple harmonic motion is defined by F = −kx.

If we work only in 1D, then F = −ky .

Newton’s second law says the force on an object is equation to the product of its mass
and acceleration, F = ma.

If we know the displacement y of our ball, then we can find its velocity by differentiating,
dy
dt .

We can then find the acceleration by differentiating the velocity, d2y
dt2

And so, our final equation is,

m
d2y

dt2
= −ky ,

d2y

dt2
= − k

m
y .

And lastly, we should specify some initial conditions,

y(t = 0) = L,
dy

dt
(t = 0) = 0.
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Simulating Simple Harmonic Motion

Theorem

Simple harmonic motion is quantified by,

d2y

dt2
= − k

m
y , y(t = 0) = L,

dy

dt
(t = 0) = 0.

Task

1 Solve the SHM equation.

2 Build a simulation using ODE45 which models SHM between t ∈ [0, 10].
For the constants, use L = 1 and m = 1, and water has a spring constant of k ≈ 20.
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Damping
Our assumption of no friction/resistance is obviously not realistic. There would be some
resistance which would make the oscillation (bobbing) gets smaller over time. This is
called damping.

The friction on our ball would be proportional to its velocity - i.e. the faster it goes, the
more friction it experiences. We can quantify this as Ffric = −cv = −c dy

dt .
So accounting for friction, our equation would become

F = −ky − c
dy

dt
= m

d2y

dt2
,

With some rearrangement, we get,

d2y

dt2
= − c

m

dy

dt
− k

m
y .

And we can keep the same initial conditions,

y(t = 0) = L,
dy

dt
(t = 0) = 0.
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Simulating Damped Simple Harmonic Motion

Theorem

Damped simple harmonic motion is quantified by,

d2y

dt2
= − c

m

dy

dt
− k

m
y , y(t = 0) = L,

dy

dt
(t = 0) = 0.

Task

1 Modify your simulation from earlier to model damped SHM between t ∈ [0, 10].
Using the same constants as before (L = 1, m = 1, k = 20), using a damping coefficient
of c = 0.5.

2 Now run your simulation for each of the following, and comment on what you notice.
▶ c = 1
▶ c = 2
▶ c = 5

▶ c = 10
▶ c = 20
▶ c = 50
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Further Modelling
Building Models
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Instructions

Over to you!

On the following slides, details on how to begin modelling each of the earlier experiments are
given.

Archimedes’ Principle

Stokes’ Theorem

Buoyancy

Bernoulli’s Principle

Using the information on these slides and your knowledge of Octave (along with whatever you
can find out online), your job is to produce a simulation of the experiments from previous
sessions.
Focus mainly on your experiment, but you can model some of the other experiments as well if
you wish.
If you have a working simulation which matches your results, then there are some extension
ideas for each one.
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Further Modelling
Building Models - Stokes’ Law
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Stokes’ Law

The viscoscity of a fluid is given by,
F = 6πµrv .

Force on object at terminal velocity is,

F = mg − ρg
4

3
πr3.
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Constants

F Force on an object

µ Viscosity

r Radius of spherical object

v Terminal velocity

m Mass of object

g Gravitational constant = 9.81 ms−1

ρ Density of fluid
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Stokes’ Law

Simulation Suggestion

Plot the graph comparing the terminal velocity of a sphere relative to the viscosity of the fluid
it falls through.

Extension Ideas

Use the Buoyancy experiment to consider how Stokes’ Law could be used to find the
salinity of water by finding its density first.

Consider differently shaped objects and how Stokes’ Law might apply to them. For
example, how would a cube or a cone behave?
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Further Modelling
Building Models - Buoyancy
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Buoyancy

The density of water is directly proportional to its salinity.
The salinity of water is given by,

S =
msalt

msalt +mwater

Salinity/ % Density/ kg ·m−3

0 998.34

5 1036.39

10 1075.58

15 1116.36

20 1158.89
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Constants

S Salinity

msalt/water Mass of salt/water
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Buoyancy

Simulation Suggestion

Plot the graph comparing the density of water relative to its salinity, finding the linear
relationship between them. Then use compare this to the average density of your egg.

Extension Ideas

Use Stokes’ Law to calculate the speed at which the egg falls through water.

Consider items with different densities and compare what the salinity of the water would
need to be in order for them to float in the same context.
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Further Modelling
Building Models - Bernoulli’s Principle
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Bernoulli’s Principle
Bernoulli’s equation for a siphon is,

v2

2
+ gy +

P

ρ
= Constant.

One can find four equations for the system.

Location Equation

y = 0 02

2 + g(0) + Patm
ρ = Const

A
v2
A
2 − gd + PA

ρ = Const

B
v2
B
2 + ghB + PB

ρ = Const

C
v2
C
2 − ghC + Patm

ρ = Const

By equating these equations, one can derive formulae for vmax, hmax,
etc.
Water is incompressible, so vA = vB = vC .
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Constants

v Fluid velocity along streamline

g Gravitational constant = 9.81 ms−1

y Elevation

P Pressure along streamline

ρ Fluid density
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Bernoulli’s Principle

Simulation Suggestion

Plot the graph comparing pressure throughout the siphon relative to its y -value.

Extension Ideas

Plot the graph based on the distance travelled along the siphon, rather than simply the
y -value.

Derive equations for vmax, hmax, etc, and compare how varying certain aspects of the
siphon might change these things.
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